C# OpenCvSharp DNN Yolov8-OBB 旋转目标检测 源码

C# OpenCvSharp DNN Yolov8-OBB 旋转目标检测 源码

108.59MBRAR

C# OpenCvSharp DNN Yolov8-OBB 旋转目标检测 源码

效果

模型信息

Model Properties

————————-

date:2024-02-26T08:38:44.171849

description:Ultralytics YOLOv8s-obb model trained on runs/DOTAv1.0-ms.yaml

author:Ultralytics

task:obb

license:AGPL-3.0 https://ultralytics.com/license

version:8.1.18

stride:32

batch:1

imgsz:[640, 640]

names:{0: ‘plane’, 1: ‘ship’, 2: ‘storage tank’, 3: ‘baseball diamond‘, 4: ‘tennis court’, 5: ‘basketball court’, 6: ‘ground track field’, 7: ‘harbor’, 8: ‘bridge’, 9: ‘large vehicle’, 10: ‘small vehicle’, 11: ‘helicopter’, 12: ’roundabout’, 13: ‘soccer ball field’, 14: ‘swimming pool’}

—————————————————————

Inputs

————————-

name:images

tensor:Float[1, 3, 640, 640]

—————————————————————

Outputs

————————-

name:output0

tensor:Float[1, 20, 8400]

—————————————————————

项目

代码

using OpenCvSharp;

using OpenCvSharp.Dnn;

using System;

using System.Collections.Generic;

using System.Drawing;

using System.IO;

using System.Linq;

using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo

{

public partial class frmMain : Form

{

public frmMain()

{

InitializeComponent();

}

string fileFilter = “*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png”;

string image_path = “”;

DateTime dt1 = DateTime.Now;

DateTime dt2 = DateTime.Now;

string modelpath;

string classer_path;

List class_names;

Net opencv_net;

Mat BN_image;

Mat image;

Mat result_image;

string[] class_lables;

private void button1_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

pictureBox2.Image = null;

textBox1.Text = “”;

image_path = ofd.FileName;

pictureBox1.Image = new Bitmap(image_path);

image = new Mat(image_path);

}

private void Form1_Load(object sender, EventArgs e)

{

modelpath = “model/yolov8s-obb.onnx”;

classer_path = “model/lable.txt”;

opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

List str = new List();

StreamReader sr = new StreamReader(classer_path);

string line;

while ((line = sr.ReadLine()) != null)

{

str.Add(line);

}

class_lables = str.ToArray();

image_path = “test_img/1.png”;

pictureBox1.Image = new Bitmap(image_path);

}

private void button2_Click(object sender, EventArgs e)

{

if (image_path == “”)

{

return;

}

textBox1.Text = “检测中,请稍等……”;

pictureBox2.Image = null;

button2.Enabled = false;

Application.DoEvents();

image = new Mat(image_path);

//图片缩放

image = new Mat(image_path);

int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;

Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);

Rect roi = new Rect(0, 0, image.Cols, image.Rows);

image.CopyTo(new Mat(max_image, roi));

float[] result_array;

float factor = (float)(max_image_length / 640.0);

// 将图片转为RGB通道

Mat image_rgb = new Mat();

Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);

Mat resize_image = new Mat();

Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);

//配置图片输入数据

opencv_net.SetInput(BN_image);

//模型推理,读取推理结果

Mat[] outs = new Mat[1] { new Mat() };

string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

dt1 = DateTime.Now;

opencv_net.Forward(outs, outBlobNames);

dt2 = DateTime.Now;

int num_proposal = outs[0].Size(1);

int nout = outs[0].Size(2);

if (outs[0].Dims > 2)

{

outs[0] = outs[0].Reshape(0, num_proposal);

}

Mat result_data = new Mat(20, 8400, MatType.CV_32F);

result_data = outs[0].T();

List position_boxes = new List();

List class_ids = new List();

List confidences = new List();

List rotations = new List();

// Preprocessing output results

for (int i = 0; i < result_data.Rows; i++)

{

Mat classes_scores = new Mat(result_data, new Rect(4, i, 15, 1));

OpenCvSharp.Point max_classId_point, min_classId_point;

double max_score, min_score;

// Obtain the maximum value and its position in a set of data

Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,

out min_classId_point, out max_classId_point);

// Confidence level between 0 ~ 1

// Obtain identification box information

if (max_score > 0.25)

{

float cx = result_data.At(i, 0);

float cy = result_data.At(i, 1);

float ow = result_data.At(i, 2);

float oh = result_data.At(i, 3);

double x = (cx – 0.5 * ow) * factor;

double y = (cy – 0.5 * oh) * factor;

double width = ow * factor;

double height = oh * factor;

Rect2d box = new Rect2d();

box.X = x;

box.Y = y;

box.Width = width;

box.Height = height;

position_boxes.Add(box);

class_ids.Add(max_classId_point.X);

confidences.Add((float)max_score);

rotations.Add(result_data.At(i, 19));

}

}

// NMS

int[] indexes = new int[position_boxes.Count];

CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes);

List rotated_rects = new List();

for (int i = 0; i < indexes.Length; i++)

{

int index = indexes[i];

float w = (float)position_boxes[index].Width;

float h = (float)position_boxes[index].Height;

float x = (float)position_boxes[index].X + w / 2;

float y = (float)position_boxes[index].Y + h / 2;

float r = rotations[index];

float w_ = w > h ? w : h;

float h_ = w > h ? h : w;

r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);

RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));

rotated_rects.Add(rotate);

}

result_image = image.Clone();

for (int i = 0; i < indexes.Length; i++)

{

int index = indexes[i];

Point2f[] points = rotated_rects[i].Points();

for (int j = 0; j < 4; j++)

{

Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2);

}

Cv2.PutText(result_image, class_lables[class_ids[index]] + “-” + confidences[index].ToString(“0.00”),

(OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);

}

pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());

textBox1.Text = “推理耗时:” + (dt2 – dt1).TotalMilliseconds + “ms”;

button2.Enabled = true;

}

private void pictureBox2_DoubleClick(object sender, EventArgs e)

{

Common.ShowNormalImg(pictureBox2.Image);

}

private void pictureBox1_DoubleClick(object sender, EventArgs e)

{

Common.ShowNormalImg(pictureBox1.Image);

}

}

}

using OpenCvSharp;

using OpenCvSharp.Dnn;

using System;

using System.Collections.Generic;

using System.Drawing;

using System.IO;

using System.Linq;

using System.Windows.Forms;

 

namespace OpenCvSharp_DNN_Demo

{

    public partial class frmMain : Form

    {

        public frmMain()

        {

            InitializeComponent();

        }

 

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        string image_path = "";

 

        DateTime dt1 = DateTime.Now;

        DateTime dt2 = DateTime.Now;

 

        string modelpath;

        string classer_path;

 

        List<string> class_names;

 

        Net opencv_net;

        Mat BN_image;

 

        Mat image;

        Mat result_image;

 

        string[] class_lables;

 

        private void button1_Click(object sender, EventArgs e)

        {

            OpenFileDialog ofd = new OpenFileDialog();

            ofd.Filter = fileFilter;

            if (ofd.ShowDialog() != DialogResult.OK) return;

 

            pictureBox1.Image = null;

            pictureBox2.Image = null;

            textBox1.Text = "";

 

            image_path = ofd.FileName;

            pictureBox1.Image = new Bitmap(image_path);

            image = new Mat(image_path);

        }

 

        private void Form1_Load(object sender, EventArgs e)

        {

            modelpath = "model/yolov8s-obb.onnx";

            classer_path = "model/lable.txt";

 

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

 

            List<string> str = new List<string>();

            StreamReader sr = new StreamReader(classer_path);

            string line;

            while ((line = sr.ReadLine()) != null)

            {

                str.Add(line);

            }

            class_lables = str.ToArray();

 

            image_path = "test_img/1.png";

            pictureBox1.Image = new Bitmap(image_path);

 

        }

 

        private  void button2_Click(object sender, EventArgs e)

        {

            if (image_path == "")

            {

                return;

            }

            textBox1.Text = "检测中,请稍等……";

            pictureBox2.Image = null;

            button2.Enabled = false;

            Application.DoEvents();

 

            image = new Mat(image_path);

 

            //图片缩放

            image = new Mat(image_path);

            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;

            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);

            Rect roi = new Rect(0, 0, image.Cols, image.Rows);

            image.CopyTo(new Mat(max_image, roi));

 

            float[] result_array;

            float factor = (float)(max_image_length / 640.0);

 

            // 将图片转为RGB通道

            Mat image_rgb = new Mat();

            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);

            Mat resize_image = new Mat();

            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

 

            BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);

 

            //配置图片输入数据

            opencv_net.SetInput(BN_image);

 

            //模型推理,读取推理结果

            Mat[] outs = new Mat[1] { new Mat() };

            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

 

            dt1 = DateTime.Now;

 

            opencv_net.Forward(outs, outBlobNames);

 

            dt2 = DateTime.Now;

 

            int num_proposal = outs[0].Size(1);

            int nout = outs[0].Size(2);

 

            if (outs[0].Dims > 2)

            {

                outs[0] = outs[0].Reshape(0, num_proposal);

            }

 

            Mat result_data = new Mat(20, 8400, MatType.CV_32F);

            result_data = outs[0].T();

            List<Rect2d> position_boxes = new List<Rect2d>();

            List<int> class_ids = new List<int>();

            List<float> confidences = new List<float>();

            List<float> rotations = new List<float>();

            // Preprocessing output results

            for (int i = 0; i  0.25)

                {

                    float cx = result_data.At<float>(i, 0);

                    float cy = result_data.At<float>(i, 1);

                    float ow = result_data.At<float>(i, 2);

                    float oh = result_data.At<float>(i, 3);

                    double x = (cx - 0.5 * ow) * factor;

                    double y = (cy - 0.5 * oh) * factor;

                    double width = ow * factor;

                    double height = oh * factor;

                    Rect2d box = new Rect2d();

                    box.X = x;

                    box.Y = y;

                    box.Width = width;

                    box.Height = height;

                    position_boxes.Add(box);

                    class_ids.Add(max_classId_point.X);

                    confidences.Add((float)max_score);

                    rotations.Add(result_data.At<float>(i, 19));

                }

            }

 

            // NMS 

            int[] indexes = new int[position_boxes.Count];

            CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes);

            List<RotatedRect> rotated_rects = new List<RotatedRect>();

            for (int i = 0; i  h ? w : h;

                float h_ = w > h ? h : w;

                r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);

                RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));

                rotated_rects.Add(rotate);

            }

 

            result_image = image.Clone();

 

            for (int i = 0; i < indexes.Length; i++)

            {

                int index = indexes[i];

                Point2f[] points = rotated_rects[i].Points();

 

                for (int j = 0; j < 4; j++)

                {

                    Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2);

                }

 

                Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),

                    (OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);

            }

 

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());

            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

 

            button2.Enabled = true;

        }

 

        private void pictureBox2_DoubleClick(object sender, EventArgs e)

        {

            Common.ShowNormalImg(pictureBox2.Image);

        }

 

        private void pictureBox1_DoubleClick(object sender, EventArgs e)

        {

            Common.ShowNormalImg(pictureBox1.Image);

        }

    }

}

资源下载此资源下载价格为46.0金币,请先
资源下载
下载价格46.0 金币

资源声明(购买视为同意此声明):
1.在网站平台的任何操作视为已阅读和同意网站底部的注册协议及免责声明,本站资源已是超低价,且不提供技术支持
2.部分网络用户分享网盘地址有可能会失效,如发生失效情况请发邮件给客服code711cn#qq.com (把#换成@)会进行补发
3.本站站内提供的所有可下载资源(软件等等)本站保证未做任何负面改动;但本网站不能保证资源的准确性、安全性和完整性,用户下载后自行斟酌,我们以交流学习为目的,并不是所有的源码都不是100%无错或无bug;需要您有一定的基础能够看懂代码,能够自行调试修改代码并解决报错。同时本站用户必须明白,源码便利店对提供下载的软件等不拥有任何权利,其版权归该资源的合法拥有者所有。
4.本站所有资源仅用于学习及研究使用,请必须在24小时内删除所下载资源,切勿用于商业用途,否则由此引发的法律纠纷及连带责任本站和发布者概不承担
5.因资源可复制性,一旦购买均不退款,充值余额也不退款

充值送金币,用余额购买,低至6.7折!立即充值

显示验证码
没有账号? 注册  忘记密码?