7KBZIP
【资源介绍】
基于RK3588上部署yolov5s模型源码(实时摄像头检测)+部署说明文档.zip
该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。
该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。
项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。
yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)
– 所需:
– 安装了Ubuntu20系统的RK3588
– 安装了Ubuntu18的电脑或者虚拟机
一、yolov5 PT模型获取
二、PT模型转onnx模型
– 将`models/yolo.py`文件中的`class`类下的`forward`函数由:
“`python
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
if isinstance(self, Segment): # (boxes + masks)
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no – self.nc – 5), 4)
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
else: # Detect (boxes only)
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf), 4)
z.append(y.view(bs, self.na * nx * ny, self.no))
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
“`
改为:
“`python
def forward(self, x):
z = [] # inference
资源声明(购买视为同意此声明): 1.在网站平台的任何操作视为已阅读和同意网站底部的注册协议及免责声明,本站资源已是超低价,且不提供技术支持 2.部分网络用户分享网盘地址有可能会失效,如发生失效情况请发邮件给客服code711cn#qq.com (把#换成@)会进行补发 3.本站站内提供的所有可下载资源(软件等等)本站保证未做任何负面改动;但本网站不能保证资源的准确性、安全性和完整性,用户下载后自行斟酌,我们以交流学习为目的,并不是所有的源码都不是100%无错或无bug;需要您有一定的基础能够看懂代码,能够自行调试修改代码并解决报错。同时本站用户必须明白,源码便利店对提供下载的软件等不拥有任何权利,其版权归该资源的合法拥有者所有。 4.本站所有资源仅用于学习及研究使用,请必须在24小时内删除所下载资源,切勿用于商业用途,否则由此引发的法律纠纷及连带责任本站和发布者概不承担 5.因资源可复制性,一旦购买均不退款,充值余额也不退款