Withdrawal method: Baidu.comTotal [86] sectionsAvailability of courseware: YesYou will gain
掌握GAN模型经典算法及其论文核心思想
熟练使用深度学习框架构建各大经典架构
掌握对抗生成网络当下主流算法框架及其应用
熟练基于论文构建自己的项目
population (esp. of a group of people)
深度学习方向的同学们 Courses
对抗生成网络实战系列主要包括三大核心内容:1.经典GAN论文解读;2.源码复现解读;3.项目实战应用。全程实战解读各大经典GAN模型构建与应用方法,通俗讲解论文中核心知识点与整体网络模型架构,从数据预处理与环境配置开始详细解读项目源码及其应用方法。提供课程所需全部数据,代码,PPT。
Course Catalog
第一章:对抗生成网络架构原理与实战解析 课程介绍(数据代码下载————->需要PC登录) 07:48 对抗生成网络通俗解释 08:24 GAN网络组成 05:14 损失函数解释说明 10:05 数据读取模块 08:26 生成与判别网络定义 08:39 第二章:基于CycleGan开源项目实战图像合成 CycleGan网络所需数据 06:50 CycleGan整体网络架构 10:03 PatchGan判别网络原理 04:40 Cycle开源项目简介 07:07 数据读取与预处理操作 10:17 生成网络模块构造 12:12 判别网络模块构造 05:02 损失函数:identity loss计算方法 09:12 生成与判别损失函数指定 11:40 额外补充:VISDOM可视化配置 05:54 第三章:stargan论文架构解析 stargan效果演示分析 06:13 网络架构整体思路解读 09:00 建模流程分析 07:08 V1版本存在的问题及后续改进思路 06:34 V2版本整体网络架构 08:01 编码器训练方法 06:23 损失函数公式解析 08:31 训练过程分析 04:50 第四章:stargan项目实战及其源码解读 项目配置与数据源下载 05:11 测试效果演示 06:17 项目参数解析 04:28 生成器模块源码解读 07:46 所有网络模块构建实例 07:18 数据读取模块分析 10:29 判别器损失计算 05:51 损失计算详细过程 07:04 生成模块损失计算 10:58 测试模块效果与实验分析 04:34 第五章:基于starganvc2的变声器论文原理解读 论文整体思路与架构解读 07:26 VCC2016输入数据 07:26 语音特征提取 11:38 生成器模型架构分析 05:11 InstanceNorm的作用解读 07:30 AdaIn的目的与效果 05:07 判别器模块分析 13:10 第六章:starganvc2变声器项目实战及其源码解读 数据与项目文件解读 07:00 环境配置与工具包安装 08:02 数据预处理与声音特征提取 13:46 生成器构造模块解读 09:07 下采样与上采样操作 07:54 starganvc2版本标签输入分析 06:00 生成器前向传播维度变化 07:03 判别器模块解读 07:49 论文损失函数 08:02 源码损失计算流程 06:07 测试模块-生成转换语音 09:05 第七章:图像超分辨率重构实战 论文概述 05:17 网络架构 08:47 数据与环境配置 07:49 数据加载与配置 08:34 生成模块 07:32 判别模块 06:57 VGG特征提取网络 06:18 损失函数与训练 11:47 测试模块 07:59 第八章:基于GAN的图像补全实战 论文概述 10:02 网络架构 11:03 细节设计 08:01 论文总结 09:19 数据与项目概述 10:07 参数基本设计 09:14 网络结构配置 12:21 网络迭代训练 16:54 测试模块 05:24 第九章:基础补充-PyTorch卷积模型实例 Convolutional network parameter definitions 07:21 Network Process Interpretation 07:26 Vision module functionality explained 05:10 Categorization task dataset definition and configuration 06:27 The role of image enhancement 04:51 Data Preprocessing and Data Enhancement Module 09:25 Batch数据制作 08:37 The goal of transfer learning 05:31 Transfer Learning Strategies 07:11 Loading the trained network model 09:54 Optimizer module configuration 05:14 Implementing the training module 08:15 Training results and model saving 09:31 Loading models to make predictions on test data 09:10 Additional Additions - Resnet Thesis Interpretation 11:47 Additional Additions - Resnet Network Architecture Explained 08:26
Resource Disclaimer (Purchase is deemed to be agreement with this statement): 1. Any operation on the website platform is considered to have read and agreed to the registration agreement and disclaimer at the bottom of the website, this site resources have been ultra-low price, and does not provide technical support 2. Some network users share the net disk address may be invalid, such as the occurrence of failure, please send an e-mail to customer service code711cn#qq.com (# replaced by @) will be made up to send 3. This site provides all downloadable resources (software, etc.) site to ensure that no negative changes; but this site can not guarantee the accuracy, security and integrity of the resources, the user downloads at their own discretion, we communicate to learn for the purpose of not all the source code is not 100% error-free or no bugs; you need to have a certain foundation to be able to read and understand the code, be able to modify the debugging yourself! code and solve the error. At the same time, users of this site must understand that the Source Code Convenience Store does not own any rights to the software provided for download, the copyright belongs to the legal owner of the resource. 4. All resources on this site only for learning and research purposes, please must be deleted within 24 hours of the downloaded resources, do not use for commercial purposes, otherwise the legal disputes arising from the site and the publisher of the collateral liability site and will not be borne! 5. Due to the reproducible nature of the resources, once purchased are non-refundable, the recharge balance is also non-refundable